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ABSTRACT 

A sequence (/.~,) of probability measures on the real line is said to converge 
vaguely to a measure tz if f[dlz. ---~f[dl~ for every continuous function f with 
compact support. In this paper one investigates problems analogous to the 
classical central limit problem under  vague convergence. Let I[/.t I[ denote the 
total mass of /x and 8o denote  the probability measure concentrated in the 
origin. For the theory of infinitesimal triangular arrays it is true in the present 
context, as it is in the classical one, that all obtainable  limit laws are limits of 
sequences of infinitely divisible probability laws. However,  unlike the classical 
situation, the class of infinitely divisible laws is not closed under  vague 
convergence. It is shown that for every probability measure ~ there is a closed 
interval [0, A], [0, e i] C [0, A] C [0,1], such that /3/~ is attainable as a limit of 
infinitely divisible probability laws iff/3 E [0, )t]. In the independent  identically 
distributed case, it is shown that if (xl + • • • + x.)/a,, a. ~ oo, converges vaguely 
to /x  with 0<Jl  p, I1< 1, then /x = I1~ 1180. If fur thermore the ratios a.÷t/a, are 
bounded above and below by positive numbers,  then L(x)= P [ [ X I [ >  x] is a 
slowly varying function of x. Conversely, if L(x)  is slowly varying, then for 
every /3 E (0, 1) one can choose a .  ~ oo so that the limit measure =/38o. 

O. Introduction 

L e t  /z.,  n => 1 a n d  tz b e  n o n n e g a t i v e  f i n i t e  m e a s u r e s  o n  t h e  B o r e l  s e t s  o f  t h e  

r e a l  l i n e .  W e  s a y  t h a t  /~. c ~/x ( /z ,  converges  to IX comp le t e l y )  if  f o r  e v e r y  

b o u n d e d  c o n t i n u o u s  f u n c t i o n  [ o n  t h e  l i n e  

(0 .1 )  f fd .- f fd . 
I f  ( 0 . 1 )  is r e q u i r e d  t o  h o l d  o n l y  f o r  f E Co, w h e r e  Co is  t h e  c l a s s  o f  c o n t i n u o u s  

f u n c t i o n s  v a n i s h i n g  a t  ~ ,  t h e n  w e  s a y / z ,  converges  to # vague ly  a n d  s i m p l y  w r i t e  
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/x,--->/z. If X is a real-valued random variable on some probability space, we 

denote by L?(X) its probability distribution function (p.d.f.). The classical central 

limit problem concerns the behavior of the p.d.f.s of normalized sums of 

independent random variables, or of row sums of triangular arrays with 

independent random variables in each row, under complete convergence. Here  

we investigate analogous problems for vague convergence. 

In the context of sums of  independent random variables vague convergence is 

more difficult, and arguably less natural, than complete convergence. The basic 
c c c 

reason is that if F,  > F and G,  > G, then F, * Gn > F * G, but this is no 

longer true under vague convergence. (Take for example F, to have unit mass at 

n and G,  to have unit mass at - n ) .  Though our prime concern is with 

developing the appropriate theory for vague convergence, some of our  results 

give new insight and approach to the classical, complete convergence theory as 

well. 

Our  main conclusions are as follows. For the theory of infinitesimal triangular 

arrays it is true in the vague convergence context, as it is in the classical one, that 

all obtainable limit laws are limits of sequences of infinitely divisible p.d.f.s. 

However,  unlike the complete convergence case, the class of infinitely divisible 

p.d.f.s is n o t  closed under vague convergence. Indeed we show that for every 

p.d.f. F there exists a nonempty closed interval Ks such that /3F is attainable as a 

limit of infinitely divisible p.d.f.s if/3 E Ks. We know that [0, e-l] C Ks C [0, A ]; it 

would be interesting to know the right end point of the interval KF. 

On the other hand, when dealing with normalized sums of independent 

random variables with a common p.d.f. F, the situation is quite otherwise: only 

for exceptional F can anything more be obtained by vague convergence than by 

complete convergence. Indeed we show that if Sn is the normalized n-th partial 

sum, S, -- (XI+ "-" + X , ) / a , ,  with an ---~ oo, then ~ ( S , )  can converge vaguely to 

a nonzero limit without converging completely only if the limit distribution is 

concentrated in the origin. If furthermore the ratios a , ÷ l / a ~  are bounded 

uniformly above and below by positive numbers, then 

L ( x )  = 1 - F ( x )  + F (  - x - ) 

must be slowly varying. Conversely if L is slowly varying, for every /3 E (0, 1) 

one can choose ak so that the limit law has mass/3 at the origin and no other 

mass on the line. 

In our discussion of triangular arrays, we develop a notion of centering 

introduced by Feller in [2]. As remarked by Feller, this can result in considerable 
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convenience in the study of convergence questions (either complete  or vague). 

The details were not pursued by Feller, and turn out to be surprisingly sensitive. 

Before proceeding we introduce some notation which will be used subse- 

quently. 

If F is a p.d.f, we will denote  the corresponding probability measure by F 

itself. G is a subprobability distribution function (s.p.d.f.) if G = flF, where fl is 

some real number,  0 _-< 13 _-< 1, and F is a p.d.f. The total variation of G, denoted 

by II G tl, equals /3 in this case. I f /3  = 0 we will simply write G = 0. 

6x will denote  the p.d.f, with unit mass at x. F *k denotes the k-fold 

convolution of the s.p.d.f. F, F *°= ][F[[6o. 

For a real-valued random variable X its expectation and variance are denoted 

by E X  and Var (X) .  N(p., 0.2) denotes the Gaussian p.d.f, with mean /z and 

variance 0 -2. ch.f. is short for "characteristic function". 

If X is a random variable, its symmetrization °X means X - .,~', where X and 

..Y are independent  and identically distributed. If F is a s.p.d.f., its symmetriza- 

tion will be denoted by °F, which means F * G, where G((a, b)) = F ( ( -  b, - a)) 
for every interval (a, b). 

A sequence of nonnegative measures (p~.) will be called tight if sup.  [[/z. [[ < co 

and for any e > 0  there exists A > 0  such that sup./z.({x : [ x [ > A } ) < e .  

1. A concentration function inequality 

If F is a p.d.f, on the line, its concentration function OF is defined by 

(1.1) OF(y) = I 
O, Y <=0, 

t s u p x F ( x + y / 2 ) - F ( x - y / 2 - ) ,  y > 0 .  

OF is a (right-continuous) p.d.f. 

Let X~, X2, • • ", X,  be independent r.v.s and °X1, °X2, • •., °X~ the correspond- 

ing symmetrized r.v.s. Let S, and °S, denote  their respective sums. The 

following concentration function inequality is well known, see [4], theorem 2.2.4, 

and will be used later: 

(1.2) Qs~(a)<=aoa x 2d °Fk + a ~ d °Fk , 

where ao is an absolute constant and al,  • •., ak are positive constants less than or 

equal to a. 

We would like to note two simple consequences of this inequality in the form 

of Propositions 1.1 and 1.2. 
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PROPOSITION 1.1. Let X~, X2 ,""  be a sequence of independent, identically 
distributed, r.v.s and let S. denote the n-th partial sum. I f  for some A > 0 

(1.3) l imsup P{ I n-laS. 1< A} > 0  

then E X~ < oo and E XI = O. 

PROOF. It is enough to prove E X~ < o0 because then E X1 = 0 follows from 

(1.3) and Kolmogorov's  strong law of large numbers. We now apply (1.2) to 

n-~J2Xk, 1 <- k <= n, to get for a = al . . . . .  a,, n => 1 

(1.4) O.-~,~s.(a) <= aoa( ( x2d°F) -~/2 
\ J lx l<an 1t2 

where F is the p.d.f, of X1. If E X~ = ~, then E °X~ = ~ and in (1.4) we have the 

left side tending to 0 for every a > 0 as n ~ ~. This contradicts (1.3), and the 

proposition is proved. 

The conclusion of the proposition is well known to be equivalent to n-1~2S, 

converging completely to the standard Gaussian distribution. Let {Xk} and {S.} 

be as in Proposition 1.1. Let 

A,  = max I Sk I, ~ (n) = (2n/log log n) 1/2. 

Jain and Pruitt showed [5] that E X, = 0, E X~ < ~ is sufficient for 

(1.5) l i m . i n f ~ )  = 7r/8 la a.s .  

Using Proposition 1.1 we can show 

PROPOSITION 1.2. I f  lim inf, q~(n)-'A, < ~  a.s. then EXI=0 ,  E X ~ < ~ .  

After  we announced this result [6] it came to our attention that Cs~iki [1] also 

observed it. 

PROOF. Let q,(n) = [~0(n)2], where [x] is the greatest integer =< x. Assume 

the hypothesis of the theorem. Then by the 0-1 law there exists a finite constant 

co such that a.s. 

An 
l iminf  ~ = Co. 
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Introduce the following notation: 

n'  = In/log log n] [log log n], 

6i) - -  S,(.) - Xo-~).(.)+~ + Xu-~),(.)+2 + " " • + X,,(.), 1 < j = [log log n], 

~ ( 0  .a- . . +  O) = • S , ( . ) ,  U o  = O. ~" ¢,(n) - -  

P X/q,(n) = iX/6-- ~ c 

= P [  max UI <c] L,~j_--t,o~,o,.j x/~(n) 
__< p [max [ U* t + I ~- '1  < 2c] 

V'~(n) 

[ IU,-U,-,l<2c] _-<P max X/q,(n) 

x / ~ ( n )  

r I C'O) I - I \ P ° g l ° s a ]  
= p /I'-'~,(-~1 < 2 c / |  

L'C~(n) J/ 

Then for c > 0, 

To obtain a contradiction, assume the conclusion of the proposition does not 

hold. By Proposition 1.1 

(i) ] 
l imP  [ IS~'~II <2c = 0  

. Lv'C,(n) 

and so the above string of inequalities yields 

By the Borel-Cantelli lemma, A2J/X/qJ(2 j) < c holds for only finitely many ], a.s. 
So for n large, 2 j < n _-<2 j÷l, one has 

m C m C 

A. -> A=, _-> c X/q,(2')_-> ~ X/~(21+')_-> ~ X/~--~. 

Choosing c > 2Co gives the desired contradiction. 
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2. Vague convergence and characteristic functions 

In the study of complete convergence the characteristic function (ch.f.) is a 

very useful tool. In part this is because of the availability of the L6vy continuity 

theorem, for which we know of no substitute in the study of vague convergence. 
However, the following holds. Let CK = class of continuous functions with 

compact support. 

PROPOSITION 2.1. Let (F.) and (G.) be sequences of s.p.d.f.s and let f. and g. 
be the ch.f.s ofF. and G. respectively. The following two conditions are equivalent: 

l imf  hd(F. - G.)= 0 forallh ~ Cr; (2.1) 

(2.2) lim~ h(f. - g.)dx ~ 0 for all h ~ Cr. 
J 

PROOF. Let h E CK. We have 

(2.3) f h(x)( f . (x)-gn(x))dx = f ~o(t)d(F.(t)-G.(t)) 

where ~ (t) = f h (x)e"Mx, The function ~ E Co, since it is the Fourier transform 

of an L 1 function. Since the total variation of F . -  (3;. is bounded by 2 the 

condition (2.1) implies that it actually holds for all h E Co. Therefore (2.1) 
implies (2.2). Now the Fourier transforms of continuous functions with compact 
support are dense in Co. Therefore (2.3) shows that (2.2) implies that (2.1) holds 
for a dense subset of Co. By obvious approximation argument we conclude that 

(2.1) holds for all h E Co. 
The following proposition also follows by similar argument. 

PROPOSmON 2.2. Let (F.) be a sequence of s.p.d.f.s and (f.) the corresponding 
sequence of ch.f.s, The following two conditions are equivalent: 

(2.4) lira, ~® f hd(F . -Fm)=O foral lhECK; 

(2.5) lim® f h (f. - f= )dx = 0  for all h E CK. 

3. Vague convergence of convolutions 

The basic reason why vague convergence is less tractable than complete 
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convergence  in connec t ion  with p rob l ems  involving convolu t ions  is that  F .  ~ F 

and G .  --~ G does  not imply F. * G .  ~ F * G. If F.  = 6., G .  = 6_., then F.  ~ 0, 

G . ~ 0 ,  but F o * G ° ~ 8 0 .  T o  conclude that  F . ~ F  and G . ~ G  implies 

F.  * G . - - - ~ F *  G some  supp l emen ta ry  condi t ions  are clearly required.  T h e  

comple te  convergence  of one  of the sequences  is enough.  In the next propos i t ion  

we give a more  genera l  condi t ion which will be  useful. 

PROPOSITION 3.1. If F, "-~ F and G. --~ G, and for each a > 0 

(3.1) lim (G. (A + a )  - G.(3.))  = 0, uniformly in n, 

then F. * G. ~ F * G. 
c Note that G. ) G implies (3.1). 

PROOV. Let  B = {(x, y ) :  a -< x ==_ b, c =< y =< d}. If  F({a,  b}) = 0, G((c, d}) = 0, 

then it is easily seen that  for a bounded  cont inuous  funct ion h on R 2 

(3 2, f f~ h(x,y)dF.(x)dG.(y)---~ fin h(x,y)dF(x)dG(y). 

Let  g be  a cont inuous  funct ion with compac t  suppor t  on R~, then 

f g(z)dF.*G.(z)= f f g(x + y)dFo(x)dG.(y) 

= f + 

([ g(x + y)d•(x)d•(y). + 
.I .II  xI>A 

If the suppor t  of  g is conta ined  in [ - a, a ] we can take  3. ~ co so that  (3.2) appl ies  

to the  rectangle  Ix I =< A, I Y I =< 3. + a wi th  g (x + y )  = h (x, y ) .  For  such A 

f f~,~=~ g(x + y)dF.(x)dG.(y)---~ f f . ,~ g(x + y)dF(x)dG(y) 

and taking [gl =< 1 we also have  

flx,>~ { f  ,g(x +y),dG.(y)}dF.(x)<= fx,>~ (G.(x +a)-G.(x-a))dF~(x). 

By (3.1) the last express ion is uniformly small in n if 3. is chosen big. This  p roves  

the proposi t ion .  
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4. Compactness and normalization 

For a sequence (F.)  of p.d.f.s the Helly selection principle asserts the existence 

of a vaguely convergent subsequence. The tightness condition 

(4.1) lim (1 - F, (A) + F, ( - h )) = 0, uniformly in n, 

is equivalent to the assertion that every vaguely convergent subsequence is 

completely convergent. Frequently one is interested not only in the given 

sequence (F.)  but in normalized sequences G . (x )  = F,(a.x  + b.), a.  > 0, b, real. 

It is well-known that if F,  " > U, and U is nondegenerate,  then F~ (a.x + b~) 

converges completely to a nondegenerate  p.d.f, if and only if a.  ~ a > 0, b, ~ b. 

(See Feller [2], VIII. 2, lemma 1.) This result is false for vague convergence. We 

will prove the following proposition which will be needed later. 

PROPOSITION 4.1. I]: XI, X 2 , " "  is a sequence of independent, identically 

distributed, rv.s  and S, = X~=l Xk, and if ~(S,/a.)---~ U ~ O, U not concentrated 

in the origin, then a, --* oo and a.+i/a. ~ 1 as n ~ oo. 

PROOF. If a.--* oo, X,/a . - -~O in probability and one obtains at once that 

a.+l/a. --~ 1. We now verify that a. ~ oo. If (1.3) holds for some A > 0, then by 

Proposition 1.1 we have E X I = 0  and EXZ~< oo so that n-'/2S, converges 

completely to N(0, 0.2), 0.2 > 0. Now if (a . )  is bounded along (nk), then along this 

subsequence, for y > 0 

P{I S. /a .  [ > 3'} = P{[ n-1/2S. [ > 3'a. n-1/2}--> 1 

1/2.....> N since a. , lnk  ,., but this contradicts the hypothesis that .T(S./a.)--> U. Now 

assume that (1.3) does not hold for any A > 0. Then, if (a. ,)  is hounded, for nk 

large 

P(InZt/2S,,I < A }>- P{Ia:2S., I< A }, 

which again contradicts our hypothesis. 

We will also need the following proposition. 

c 

PROPOSITION 4.2. Let (F.)  be a sequence of p.d.[.s, F, , F, F nondegener- 

ate. Suppose F,(a .x  + b , ) ~ G # O ,  l iminfa ,  > 0 ,  then ItGJ[= 1, and i [ G  is 

nondegenerate then G ( x )  = F(ax  + b), a, --~ a and b. ~ b. 
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PaOOF. If a,---~ oo along nk, then F,(a,x)---~8o along nk since (F , )  is a tight 

sequence.  T h e r e f o r e  F,(a~x + b.)---~GJO along nk if and only if b./a.  con- 

verges to a finite limit along nk. Thus  G is degenera te  in this case and II o II = 1. 

We may there fore  assume 0 < 8 =< am =< A <oo. In this case F,(a .x)  is a tight 

sequence,  hence  F , ( a . x + b , ) - - - ~ G i O  implies (b,)  must remain bounded .  

T h e r e f o r e  F.(a,x + b.) is a tight sequence  and its vague convergence  to G is 

comple te  convergence .  The  rest follows f rom our  remarks  before  Proposi t ion 

4.1. 

5. Vague convergence of infinitely divisible laws 

We recall that  a p.d.f. F with ch.f. ~ is infinitely divisible if and only if 

f (  iux--~ l + xZ (5.1) l o g ~ ( u ) = i u a +  e ' ~ - I  l + x 2 ] ~ d ~ ( x )  

where  c~ is real and ~ is a nonnegat ive  multiple of a p.d.f. We  shall write 

(5.2) log ~ = (a, 'I'), F = [,~, 'I']. 

A sequence  ([an, ~ . ] )  of infinitely divisible p.d.f.s converges  complete ly  if and 
c 

only if a ,  --~ a, ~ ,  ~ ~ ,  and then the limit is [a, ~ ] .  Nothing that nice holds 

for  vague convergence .  However ,  we get the following proposi t ion.  

PROPOSITION 5.1. Let F, = [an, qz ], n >= 1, be a sequence of infinitely divisible 
p.d.f.s. I f  there exists an infinitely divisible p.d.f. F = [a, ~] such that 

(5.3) a .  ~ a, 

(5.4) ~n  ~ ~ ,  

(5.5) II II it0 < 0% 

and given a > O, as it ~ oo (or it ~ - co) 

(5.6) ~ . ( i t  + a )  - ~ .  (A)---* 0, uniformly in n, 

then 

(5.7) F.  ~ e - ' F ,  

where 3' = ) to- t l~l l .  I f  (5.6) is not assumed and F, ~ H, then H([a, b]) = 

e-~F((a, b )) for each finite interval (a, b ). 
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For [3 > 0 we define ~,~ by 

• .~(A ) = q*. (A I") (/3, oo)) 

PROOF. 

(5.8) 

for a Borel set A. xp';~ and ~o are defined similarly by replacing (/3, oo) by 

( - %  - / 3 )  and [- /3, /3] ,  respectively, in (5.8). We then have 

(5.9) foe,,, * .  ] = [0, . 2 o ] .  [a., ~.o],  [0, xt'.~]. 

If - /3 , /3  are points of continuity of • then clearly [a,, ~o] c ~ [a, ~ ] ,  where 

• ~, ~-~ and ff~ are defined analogously to q t  as in (5.8). We can thus find 
/3, ~ ~ such that -+/3, are points of continuity of • and 

(5.10) [,~., ,i,.0.] --:--, D, ~] .  

The following lemma will be used to finish the proof. 

LEMMA 5.2. Under the conditions of Proposition 5.1, writing GO, = [0,~.~], 
and assuming (5.6) for A ~ % for a > 0 we have 

(5.11) lim G°.(t + a) - G°.(t) = O, 

and for [3 > 0 

(5.12) 

where 

uniformly in n and t; 

= ~" e x p ( -  A.(/3)), 
G~.(x) 

t O, 

m.(/3) < x </3 + m.(/3), 

x < m.([3),  

(5.13) ,~.(/3) = f_= 1 + x 2 x~ d'~.°(x), m.(/3) = f_= l : x 2 d ~ ° , ( x ) .  

Analogues of (5.12) and (5.13) hold for [3 < 0 as well. 

PROOF OF LEMMA. Let 

dHB.(x) = A,(/3)-'(1 + x2)x-2d~,(x) .  

Then H,  ---H, ~ is a p.d.f., and 

(5.14) G~.(x - m,(/3)) = e x p ( -  A.(/3)) ~ ~ H * k ( x ) .  
k = O  
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(5.12) follows from this immediately. By (5.5) we have 

(5.15) lim m, (/3) = 0, uniformly in n. 
0 ~  

For t > 0 ,  a > 0 ,  /3 large (so m,(/3)-< 1) 

G~,(t + a ) -  G°,(t)<= G~,(t + a + 1 - m , ( / 3 ) ) -  G°,(t - m.(/3)) 

= e -~.(0) [H*k(t  + a + 1) -  H*k(t)] 
k= O 

< e - ~ - ( m ~  ~ /2a 2). 
= k=0 k! v-..~ + 

By the definition of H .  ~ we have 

On.(2a +2)  < a.(/3) ' +1 +o--~2 ~ = sup (qt.(x + a + 1) -  qt.(x)). 
b J  x>.8  

Therefore 
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1 l+[32sup(q ,  ( x + a + l ) _ X i ,  (x)). G~,(t + a ) -  G°.(t) <- e-~-tZ)(e * - ' ) -  1)A.(/3) /32 ~>0 

This together with (5.6) implies (5.11). 
To finish the proof of the proposition we will apply the lemma with/3 > 0 and 

its analogue with /3 < 0. We have 

(5.16) q, ([/3., ~))__ < A.(/3.) < = 1 , , . ( [ /3 . ,  ~)), 
/3 

and a similar inequality holds for -/3. .  We now pick /3, -+ w such that (5.10) 

holds. By (5.5) and (5.16) every sequence has a further subsequence such that 

(5.17) A. (/3.)-+ y,, h . ( - / 3 . ) - +  3'2, 

where the limits individually may depend on the subsequence but they satisfy 

(5.18) 3', + 3,2 = A0 -[[q~l[. 

It thus follows from (5.12) that every sequence has a further subsequence along 

which 

(5.19) G~."-+ e-"6o, G ;  °"-+ e-'26o. 

We now apply (5.11) to use Proposition 3.1 to conclude 

(5.20) G~, "* G-. °"--+ e-(~'+~2)6o = e-~6o. 
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One more application of Proposition 3.1 shows that every sequence has a further 

subsequence along which 

G o. ,  [a., ~ o . ] ,  G ~.__~ e-~6o * [c~, ~] ,  

and this means the whole sequence converges to the desired limit. This proves 

the first part of the proposition. For the second part, if a < b, then, writing 

0 .  0"= [a.,~.~-], we have 

F.([a, b,) >- G°..([a + e,b - e])G.~-([ - 2 ' 2  ]) G : o " ( [ - 1 ' 2 ] ) "  

(5.10) and (5.19) still hold even if (5.6) does not, therefore 

lira inf F.([a,  b ] ) =  F([a + e, b - el)e-"  
n 

provided a + e a n d  b - e are continuity points of F. It follows that 

H([a, b]) _-> e-~F((a, b)). 

The following result is now obvious. 

THEOREM 5.3. Let F, = [a., ~ ,  ], n => 1, be a sequence of  infinitely divisible 
p.d.f.s. Suppose (or,) and ([[V, I]) are bounded sequences and condition (5.6) 

holds. Then (F.) converges vaguely if and only ira.  ~ a, ~ .  ~ ~ ,  [[~. 11---~ ]l'l[ + 
3', and then 17. ~ e-" [a, ~]. 

REMARK 5.4. The condition (5.6) clearly holds if the measures ~ ,  are all 

concentrated on a half-line [a, oo) (or on (-0% a]). 

The class of infinitely divisible p.d.f.s is closed under complete convergence. 
The closure under vague convergence is not precisely known. The next theorem 

shows it is extensive. 

THEOREM 5.5. For any p.d.[. H and any fl E [0, e-'],  ~ H  is the vague limit of 

a sequence o]:infinitely divisible p.d.f.s. The set of  all such ~ is a closed interval. 

PROOF. 

Then 

Let F . ( x ) =  H (x  + n), and for A -- 0 

q,.(u) = ,X( ~ (e ' "  - 1)dF.(x). 
j_= 
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¢ . ( u )  = exp{ql. (u) + iun} 

is the ch.f. of a p . d . f . G ,  which is given by 

- A  k e A --.k. G.(x)= -T~. r~ ~x-n).  
k = 0  

Evidently 

and 

F*~---~0 as n----~oo for k = 0 , 1 , 2 , ' - -  

G. --~ he-~H. 

Since the closure of the range of Ae-~ is [0, e-X], the first part of the theorem is 

proved. 

REMARK 5.6. (a) Evidently a p.d.f. H will be the vague limit of a sequence of 

infinitely divisible p.d.f.s if and only if H is infinitely divisible. For any p.d.f. H 

there exists a compact interval Kr~ such that /3H is in the vague closure of 

infinitely divisible p.d.f.s if and only if/3 E KH. Theorem 5.5 says that [0, e-l] C 

KH. Example 5.7 below shows that max KH can be as close to 1 as desired. 

(b) The proof of Theorem 5.5 shows that for [a,, ~ , ]  to converge vaguely (to 

nonzero distributions) the sequence (a , )  need not stay bounded. If one demands 

that (a , )  stay bounded then the class of vague limits is smaller. In this connection 

the following example is of interest. 

EXAMPLE 5.7. Let A > 0 and ~ ,  = A6,+~ + h6_.. Then [0, ~ . ]  ~ F, where F is 

concentrated on {0, 1 , 2 , - . .  }, F({0})= e -z~, F({k})= e-Z~AZk/(k !)2. F is not a 

constant multiple of an infinitely divisible p.d.f. Also I[F[[ can be made as close to 

1 as desired by taking A small. 

6. Triangular arrays 

Consider the classical setup of triangular arrays: X,~, 1 =< k =< k,, n = 1, 2, • • •, 

~ (X,k )  = F,k. The random variables in each row, indexed by n, are assumed 

independent.  The array is called infinitesimal if given e > 0 

(6.0) lim sup P [] X~k [ > e ] = O. 

k 

Let S, = Y.k"--~X,~ denote the n-th row sum. An excellent exposition of the 
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classical results on complete convergence of ~ ( S , )  is given in Gnedenko and 

Kolmogorov [3]; our emphasis here is however closer to that found in the 

discussion by Feller [2]. In the following subsections we will discuss the vague 

convergence of ~ (S , ) .  

6a. Centering of triangular arrays. Let (X.~) be an infinitesimal triangular 

array. In working with such arrays it is frequently convenient to center them by 

introducing constants a,k and working with (X.k - a , k ) .  The traditional choice 

for the a,k are the truncated means. In [2] Feller observed that the c~,k should be 

picked to satisfy the relation (6.2) below. It turns out that in studying vague 

convergence such a choice is very useful. Somewhat surprisingly the traditional 

choice of truncated means may not fulfill this condition. However,  choosing the 

a.k so that X.k - a.k has zero truncated mean, for some truncation point, is a 

good choice, as we wild show. 

For c > 0 define 

(6.1) ~8.~(c) = f~l~c xdF.k(x). 

The array (X,k) is said to be centered if for some c > 0 

k 

t3 .k(c)  2 
k=l 

k - -~0  as n - - + ~ .  (6.2) ~.(c) = ( 

Z x2dF, k (x ) 
k =1 JlxI ~c 

Lemma 6.1 shows that if the array is centered for some c, then it is centered for 

all larger c, while Lemma 6.3 shows that one can always find constants d.k such 

that (X,k - d , ~ )  is a centered array. 

LEMMA 6.1. I[ for the infinitesimal array (X.k) the condition (6.1) holds for 
some c > O, then it holds for all c' >= c. 

P R O O F .  We have 

13.k(c')2= ([3.~(c)+ fc<x,~c, xdF, k) 2 

< )5 
=2/3.k(C)2+ 2(fo<,=,.o. xdF.k 

_-< 2/3.k(c)2+ 2 £ x~dF.~P[IX.~l>c]. 
<[x[=<c ' 
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Therefore  

where 

~ '  /3.k(c')2__<2~ ', ~.k(c)~+20.6 .  

We thus have 

k <rxF~c' 

~.(c')  <- 2~o(c ) + 20.. 

Since 0.--~ 0 by infinitesimality, the lemma is proved.  

REMARK 6.2. (a) It is not t rue that if (6.2) holds for some c > 0, then it holds 

for all c > 0 .  

(b) Surprisingly, it is not true that if (Xok) is an infinitesimal array then 

(X.~ - /3 .k )  is necessarily centered.  Consider  X.k, 1 =< k _-< n, n = 1, 2, • • • with 

P[X.~ = n] = n ', P[X.k = n -~] = 1 -  n - ' ,  

(c) Constants  8.k can be found such that (X .k - -8 .k )  is centered  and 

fl~l<=cxdF.k(x + 8.k) = O. 

LEMMA 6.3. 

defined by 

I f  (X.k ) is an infinitesimal triangular array and constants d.k are 

(6.3) f (x - d.~)dF.k(x) = 0 
xF<~c 

for some c > O, then the array (X.k - d.k) is a centered infinitesimal array for 

which the analogue of (6.2) holds for all c' > c. 

PROOF. Let X 'k  = X.k -- d.k and F'.k(x) = F.k(X + d.k). Let ~" be defined by 

(6.2) in terms of F'.k. We need to show that ~"(c ')--+0 as n - - + ~  for  all c ' > c .  

Since (X.k) is infinitesimal, d.k --+0 uniformly in k as n --+~, therefore  (X'k)  is 

also infinitesimal. We have 

and using (6.3) we get 

< f Ix - d.k [dF .k (x )  
J / ~ ' o k ( c ) l  = Jr -  . . . .  ~ o ~ M  . . . .  ~ . .  
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where [a, b] is to be interpreted as [b, a] if b < a. Hence for n sufficiently large 

13"k(c) 2 = 16c 2y~.~ 

where 

~ . ,  = Fo~ ([ - c, - c + do~ ] u [c,  c + d.~ ]). 

If c ' >  c, then for n sufficiently large, we also get 

ft,q<=c, x2dF'k(x)>= c---4 % k" 

Since ynk--~0 uniformly in k it follows that 

(13'o~(c)) ~ ~ ~,~ 
k <64  k -"*0 

as n---) oo. To finish the proof observe that 

~'k xdF'k c2•  (P[c < ]X 'k l  =< c']) 2 
<l,,l~=c, <_ k ~ 0 

X dF,k c2~'. P[c < l x ' k l - < c  '] 
xl~c' k 

as n ~ oo. Therefore : '  tc q ~ 0 for c' > c. ~ nk  .t 

The next proposition gives a tightness criterion for centered arrays that will be 

needed. 

PROPOSITION 6.3a. Let (Xnk ) be a centered infinitesimal array and S. its n-th 
row sum. Then (~L/'(S,)) is a tight sequence if and only if we have 

sup'~k f 1--~x 2dF'~k(x)<°° 

and 

(13) l i m ~  P[IX,~ I>A]  = 0 uniformly in n. 
A~ k 

PROOF. The proof is essentially the same as the proof of lemma 1 [2], p. 299. 

The condition (7.3) in [2], p. 229, becomes the condition that for some c > 0 

Ix c (Ix oc xd  )2] 
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Since the array is centered, we can find c > 0 so that this condition is equivalent 

to the condition 

s u p ~  f~l~-~ x2dF"k(x)<°°" 

This condition and (/3) are clearly equivalent to (a)  and (/3). But (/3) corresponds 

to the condition (7.4) [2], p. 299. This completes the proof. 

6b. The dissipative property. Let (F,) be a sequence of p.d.f.s. The sequence 

(F,) is called dissipative if 

(6.4) F. (" + b,) ~ 0, for every real sequence (b,). 

A sequence of random variables (2(.) will be called dissipative if the sequence 

(Sf(X.)) is dissipative. Note that (6.4) is equivalent to 

(6.5) lira 0~. (y) = 0, for every real y. 
n 

We now give a necessary and sufficient condition for a triangular array to be 

dissipative. The result will be used later. 

PROPOSITION 6.4. Let (X.k) be a centered infinitesimal array and let S. be the 
n-th row sum. Then (~(S.))  is dissipative if and only if 

f x2 (6.6) lim ~ 1--T-~x~dFo~(x) = oo. 
k = l  

This proposition will also be used in the form of the following corollary which 

is an immediate consequence. 

COROLLARY 6.5. Let (X,k) and S, be as in the above proposition. 
(~(Sn)) does not possess a dissipative subsequence if and only if 

f x2 (6.7) sup'~k=, 1--+-~x 2dF"k(x)<°°" 

Then 

PROOV ov PROPOSITION 6.4. Assume (6.6). Let °F,k be the symmetrization of 

F,,k. Then for c > 0 
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,o  f x-d  E,k (x ,  >= 
xl~c Ix{-<--c/2 

Jy]~c/2 

{ x - y 12dF,,k (x)dF,  k (y) 

Y (f = 2 x 2dF, k (x)dF,,k (y) - 2 xdF.k (x)  . 
Jxl~c/2 xl<=c/2 
!yl~c/2 

Since the array is centered, for some c > 0 we have 

2 

Therefore, using infinitesimality, we have for some c > 0 and all n large 

a k Ixr<c/2 

It follows that (6.6) implies 

X 2 

which is equivalent to 

(6.8, l im(  ~ [fjx,_~c x2d°F.k(x)+c2~,, l>, d ° F . k ( x ) ] )  = ~  

for all c > 0. Therefore the concentration function inequality (1.2) implies that 

~ ( S . )  is dissipative. 
Now assume that (6.6) does not hold. Dropping to a subsequence, if necessary, 

we assume that 

( X 2 
(6.0> sup 

We will show that this implies Z(S.) is not dissipative. Let c > 0 such that (6.2) 

holds and let 

X'.k { 0 if 

X ~  = X.~ - X',~. 

S "= EkX 'k  and S "= EkX"k.  For h > 0  we have 
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P[IS.r_-<,L s " =  0l = P[JS~d_-<,~, s " = 0 ]  

_-> P [ S " =  0]-P[IS '~l  >A]  

=> p [ s "  = 0] - E(AS;"2) 

by Chebychev's inequality. Now E(S'.  2) = Va r (S ' )  + (E S.), 2<= 2Zk EX.k'2 for all 

large n since the array is centered. Therefore by (6.9) we have sup, E (S  "z) < oo, 

and for A large 

(6.10) P[IS,, I_-<)t] - --- P[S"= 01=~ 

and the last quantity in (6.10) is bounded away from zero as n ~ oo because 
sup. y. k p[IX.  k I > c ]  <oo by (6.9). Thus ~ ( S . )  cannot be dissipative. 

We will need the following lemma. The condition (6.12) which we find below 

occurs frequently in classical work on the central limit problem; Theorem 6.7 

indicates why this should be so. 

LEMMA 6.6. Let (F,k) be an infinitesimal triangular array. Let (B,k) be 

constants satisfying (6.1) and let (d,~) be defined by (6.3); both sequences are 

defined for the same c > O. Then the following two conditions are equivalent: 

(6.11) 

(6.12) 

PROOF. 

X 2 

f X2 sup Z 1-- x dFok(x + 

f x 2 f (x+[3.k-d.~y ~= (x+~.~) 

f x2 )2 dF.k (x _-< 2 1 + (x +/3.~ - d.~ + / L ~ )  + 2(/3.~ - d.~)2. 

Since/3,k ~ 0, d,k ~ 0 uniformly in k as n ~ 0% the first term to the right of the 
inequality can be dominated by 

f f 4 ~p>~ l + x  ~dF"k(x+[3~k)+2 ~l~ x2dF~(x+[3"~) 
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for e > 0 and n sufficiently large. By (6.12) this last estimate summed on k is 

bounded in n. We now look at (/3~k -d~k)2: 

( ~  _ d ~ )  ~ ~ = dnkOnk, 

where 

O,,k = fxl>c dF,,k (x) 

= f dF, k (x + [3,,k) 
x+t3.kl>c 

<- f dF,,~ (x + fl,,k ) 
xl>c/2 

for n sufficiently large, uniformly in k. Therefore again by (6.12) we have 

s u p E  2 2 oo d~k0.~ < • 
n k 

Hence (6.12) implies (6.11). The same argument with the roles of /3.~ and d.k 

switched shows that (6.11) implies (6.12) and the lemma is proved. 

THEOREM 6.7. Let (Xn~ ) be an infinitesimal triangular array and let S. be the 
n-th row sum. Then ~ ( S , )  possesses no dissipative subsequence if and only if 
(6.12) holds. 

PROOF. Let/3,k and d,k be defined as in Lemma 6.6. By Lemma 6.3 the array 

(X,k - d,k) is centered. ~ ( S , )  does not possess a dissipative subsequence if and 

only if ~ ( S , -  Ekd,k) does not. By Corollary 6.5 this is equivalent to (6.11), 

which in turn is equivalent to (6.12) by Lemma 6.6. The proof is complete. 

The following theorem will now be obtained as a corollary. 

THEOREM 6.8. Let F, = [0, qt,], n => 1, be a sequence of infinitely divisible 
laws. Then (F,) is dissipative if and only if [Igt, II -->oo. 

To avoid centering difficulties we establish the following lemma. 

LEMMA 6.9. (a) (F.) is dissipative if and only if (°F,) is dissipative. 
(b) If ( ~ . )  is a sequence of measures on the real line and 
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* ~ , ( A )  = 1 ( * , ( 3 ) +  * . ( -  A))  

where - A = {x ; - x E A }, then 

I1" .  II--. oo i f  and only i f  II * ' I ' .  II oo. 

PROOF. (b) is obvious. Also 

Q~,.~2- -< Qr,, i = 1,2 

where F~ and F2 are any p.d.f.s. Therefore  if (F,)  is dissipative so is the sequence 

(°F.). If (F,)  is not dissipative then along a subsequence we have 

I dF . ( x )  >- > 0  Ot 
x--bnl~a 

for a suitable choice of b. and a. But this implies (along the same subsequence) 

I d °F . ( x )  >- > 0  Ot 
x[~2a 

hence (°F,) is not dissipative. 

PROOF oF THEOREM 6.8. Note that °F, = [0, *~ . ] ,  where * ~ .  is defined as in 

Lemma 6.9. It is clearly enough to prove the theorem for (°F~). Let 

Let 

X 2 
~,~k (dx ) = k-~x2 d°F,k (x ). 

Then we know (see, e.g. [3], pp. 76-78) that 

(6.13) ~t,k(dx ) c ,xtt (dx) 

and 

F.~ - OF.. (6.14) ° *~ - 

If H*~, [[~ ~, we can find k, ~ oo such that 

f X 2 

° F ,  [ l~.,k. 1[ = k.  / 1 + x  zd  .k. J 

as k -,, oo 

--9.00 
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and the triangular array (X,k, 1 = k =< k~), ~ ( X ~ )  ---- °F~k., 1 <--_ k <- k,, n >= 1, is 

infinitesimal. It follows from Theorem 6.7 that (°F~) is dissipative. Conversely if 

(°F~) is dissipative, we define the infinitesimal triangular array as above. Then by 

Theorem 6.7 we must have [[~,~k. [[---~ oo, but the k, can be picked so by (6.13) we 

also have II*~F~ II~ ~. This finishes the proof. 

6c. Accompanying infinitely divisible laws. In the theory of complete 

convergence for triangular arrays the so-called accompanying infinitely divisible 

laws have been effectively used. Specifically, let (X~k) be an infinitesimal 

triangular array and let $~ be the n-th row sum. Let fn be the ch.f. of S~. It was 

shown by Gnedenko ([3], p. 112), under assumption (6.12), that there exists a 

sequence (g,) of ch.f.s of infinitely divisible laws such that fi - gn ~ 0 as n ~ o% 

so Proposition 2.1 is applicable. The g, can be explicitly written down, and 

Gnedenko's  result is a key theorem in the central limit problem. Of course the g~ 

are not uniquely determined by the requirement fi - g~ ~ 0. Indeed, the great 

convenience of centering is the possibility of choosing g, in a simpler, more 

convenient form. 

THEOREM 6.10. Let (X~)  be an infinitesimal triangular array, and (b~) a 
sequence of real numbers. Let S, denote the n-th row sum. I f  ~(S~) does not 

possess a dissipative subsequence, then 

(6.15) lim[E e '~-e*~(")[  = 0, ureal, 

where 

(6.16) *.(.3-- :E, ,.e., + f (e"-1)dF.~(x + [3.k) 

and 

= f xdF, k(x) [orsomec >O. [~nk xl~c 

In any case, ~(Sn - bn)---~ F if and only if F~ ~ F, where Fn is the accompanying 

infinitely divisible law whose ch.f. is given by e x p ( ~ ( u ) - i b n u ) .  

PROOF. By Theorem 6.7, if (~(S,))  does not possess a dissipative subse- 

quence then 
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(6.17) f X2 s u p ~  l + x------~dF, k(x + fl,k)<oo. 

If (6.17) holds, then as shown in [3], §24, we get (6.15). 

For the second part of the theorem, assume (6.17) first. Then by Proposition 

2.1, using (6.15), we conclude that ~ ( S ,  - b.)---~ F if and only if F. ~ F. Now 

assume that (6.17) does not hold. Then by Theorem 6.7 a subsequence ~(S, , )  is 

dissipative, hence ~(S, ,  - b,,) is dissipative, and if 5¢(S. - b,)---~ F then F = 0. 

We need to show that F, ---*0 in this case. If not, then along a subsequence (mj) 

the sequence (F,) converges to a nonzero limit, in particular (F,,,) is not 

dissipative. Since F, = [ a , , ~ , ]  with 

f X2 II*off= y--U   dFok(X+t3°k) 

and a,  suitable constants, it follows from Theorem 6.8 that (6.17) holds along 

(mj). But this implies (6.15) along (ms) by the first part, hence F,,j--~0, a 

contradiction. Also, if (6.17) does not hold and F, --~ F, then by Theorem 6.8 a 

subsequence (F.,) is dissipative, therefore F = 0. That ~ ( S ,  - b,)--* 0 in this case 

is proved by contraposition as above except that Theorem 6.7 is applied in place 
of Theorem 6.8. This finishes the proof. 

When (X,k) is centered and infinitesimal, the accompanying laws can be given 
a simpler form. 

THEOREM 6.1 1. Let (X,k ) be a centered infinitesimal array. I f  5f( S,) does not 
possess a dissipative subsequence then (6.15) holds with O, defined by 

(6.18) ~O.(u) = ~ f (e 'ux- 1)dF, k(x). 

In any case, ~w(S, - b,)---~ F i f  and only i fF,  ~ F, where F, has ch.f. exp(~O,(u) - 
ib, u ). 

PROOF. If ~ ( S , )  possesses no dissipative subsequence, by Corollary 6.5 

f (6.19) sup ~]k 1--~xzdFok(x)<oo. 

We will show that (6.19) implies 

(6.20) lim [E e ~s,_ exp(0,  (u))l = 0. 
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The rest of the assertion of the theorem follows by arguments similar to those 

given in the proof of Theorem 6.10. We will therefore show only that (6.19) 

implies (6.20). Let 9,~ be the ch.f. of F,k. Then it suffices to check that (6.19) 

implies 

l i m l ~ l o g ~ , k ( u ) - - ~ ( q ~ , k ( u ) - - i  ) =0 ,  ureal .  (6.21) 

We, of course, will need the fact that the array is centered. For convenience we 
write 

c~.k(u) = q~,k(u)- 1. 

Note that by infinitesimality maxka,k--->0 uniformly on bounded intervals, 

therefore log ~,k(u) is well-defined for n sufficiently large. For u fixed and n 

sufficiently large 

log q~.k(u)- ~ c~,~(u) --<2k=1 r=2 la"k(u)lrr 
(6.22) < 1  Z I c~,k (u)12(1- [a,k I) -1 

- -2  k 

= X I~-~(u)l 2. 
k 

Now 

For u and c fixed, we denote the sum of the first two terms on the right-side of 

the last inequality by y.k and denote the third term by 6.k. Thus 

We write 

E t~°k(")l 2= Z' 1~°~ 12+ Z " I~.~r 
k 

where E' is the sum on [k: y,k => 6,k], and E" is the sum of the rest of the terms. 
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Therefore 

la.k(u)12<= max/a,k 1'~' la-k I + 4~'~ 62-k 
k 

= < 2 m a x l a . k [ Z  7.~ +4  Z 62.~. 
k k k 

Now XkT,k is bounded by (6.19), and Y, k62,~=O(X~y,k) since the array is 

centered. It follows that Ek ta,k (u)t2-+ 0 as n ~ ~ and (6.21) results from (6.22). 

The following corollary is obvious. 

COROLLARY 6.12. The class of s,p.d.fis, obtained as vague limits of infinitesi- 
mal triangular arrays coincides with the class of s.p.d.f.s obtained as vague limits 
of infinitely divisible p.d.f.s. 

REMARK 6.13. Although our concern is with vague convergence here, it 

should be noticed that centering brings great convenience in dealing with 

complete convergence as well. If ~b, is given by (6.18) then exp($,)  is the ch.f. of 

[ a , , q s  ] where 

o__ f dF.~ (x) 

and 

X 2 

* . (dx  ) = ~ 1---4-~x2 dF.k (x ). 

By Theorem 6.11 and Proposition 2.1 it follows that ~ ( S .  - b . )  c , [a,  W] if and 
c 

only if a .  - b, ---, a and ~ ,  , W. In other words, it eliminates the usual bother 

at the origin, c.f. condition 2), theorem 1, {}25 [3]. 

7. Independent  identically distributed s u m m a n d s  under  vague  convergence  

In this section X , ,X2 , . . .  will be independent random variables with a 

common d.f .F.  (a,)  and (b,) will denote sequences of real numbers with a, > 0, 

a, -+ zc. We then have an infinitesimal triangular array defined by 

Xk 
(7.1) X.k = - ,  lNk<--n,  n >-1. 

a , ,  
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As shown in Feller [2], the array is centered if E Xt exists and equals 0 or 

E X~ = ~. As before we will write 

(7.2) S. = ~ X.k. 
k=l 

Necessary and sufficient conditions on F for the existence of sequences (a . )  and 

(b,,) so that L¢ (S . -  b.) converges completely are well known; when such 

normalizing sequences exist, the limit laws are stable. Under  vague convergence 

(when positive mass is allowed to escape) the situation essentially is that L(x)  

given by 

(7.3) L ( x ) =  1 -  F(x )+  F ( -  x - )  

is slowly varying near infinity as we now proceed to show. 

REMARK 7.1. By Theorem 6.11 if the array is centered we may take [a., ~ , ]  

as the accompanying infinitely divisible laws of S., where 

(7.4) 

and 

(7.5) 

PROPOSITION 7.2.  

X 
a. = n 1 + x :dF(a"x) 

X 2 
dq~.(x ) = n ~  dF(a.x ). 

Suppose L is slowly varying and along n s /~ oo we have 
niL ( a., ) ~ h > O. Then a~, --~ 0 and ~ ( S,, ) --~ e - ~ 6o, where a. is given by (7.4). 

PROOF. For convenience of writing we will prove the proposition for 

(n)  in place of (ns). The proof is valid along any nj , , ~ .  For c > 1 

Ixl d F t a x  ~) [a. l<=n(~xl~ ,x,dF(a.x)+fl~l>. l + x 2  ' " ' 

<--~f.l~=c." I x tdF(x )+  n L ( c a . )  

n - c a . L ( c a . ) +  " " L ( x ) d x  + c  
a,, 

2A 
C 

by using the slow variation of L and the fact that nL(a.)---~ A. This shows that 

O/n -"~ 0. 
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Since L is slowly varying, E X~ = o0 and (X.k) is a centered  array.  We have 

c~. --* 0. There fo re  by Remark  7.1 it suffices to show that [0, ~ . ]  ~ e-~3o, where  

• . is given by (7.5). For  0 <  y < z  

~t'. ((y, z 1)+ ~',,([- z , -  y))_-< n f( d L ( a . x )  
y,z] 

and also 

= n [ L ( a . y ) -  L(a .z ) l - -*O,  

q ' . ( [ -  y, yl)_-< nfl xZdF(a.x)  
xl--~y 

n f x2dF(x)  
-~n xl~ya n 

= - ~ . [ - y ~ a ~ . L ( y a . ) + 2 f o ~ ° " y L ( y ) d y ]  

4 0 .  

Therefore  ~,, ~ 0. Fu r the rmore  for c > 0 

I, II'I'. II = .  x = dF ( a.x ) + n x 2 dF ( a.x ) -=,-c~ 1 + -c,c] 1+ 

f, x2 + n -c.~ 1 + x ~dF(a"x) 

and the middle term on the right goes to 0 as n - - - ~  by the above  a rgument ;  the 

sum of the remaining two terms is near  nL(ca , )  uniformly in n. Since 

nL(ca.)---~& it follows that I1~, II--~ A. To  apply Proposi t ion 5.1 it remains  to 

verify that ~ . ( t  + l ) - ~ . ( t ) - - * 0  uniformly in n as t---*~ for  l > 0 .  For  t > 0 ,  

/ > 0  

* . ( t  + l) - qt. (t) _--< xlt. ((t, t + l]) + * . ( [  - t - l, - t)) 

<= n ( L ( a . t ) -  L ( a . ( t  + l))). 

For  a slowly varying function L the ratio L(xt)/L(x)---~ 1 uniformly in t on 

compact  intervals as x ~ ~;  using this fact the last term is seen to tend to 0 

uniformly in n as t ~ ~. This finishes the proof.  

PROPOSITION 7.3. Suppose 0 < a, <- a.÷~/a. <- c~2 < oo for all n, and that for 

some A > 0 and real b. 



344 N . C .  JAIN AND S. OREY Israel J. Math. 

(7.6) Le(S, - b , ) ~  e-~60, 

then L is slowly varying near infinity. 

PROOF. The hypotheses imply that E X ] =  ~, hence the array (X.k) is 

centered. By (7.6) ~ ( S , )  is not dissipative, therefore by Theorem 6.11 and 

Remark 7.1 we have 

(7.7) [a.  + b,, ~.]---~ e -~o  

where a .  and ~ .  are given by (7.4) and (7.5), respectively. For /3 > 0, in the 

notation of Proposition 5.1, we have 

(7.8) [a.  + b., ~7,~'1 * [0, ~ o ] ,  [0, e-~6o. 

We claim that IIqt~,]l--~0. If not, then along a subsequence ~t~ ¢ ~  with 

II'I'll>0 because these measures are concentrated on [-/3,/31. Then along a 

further subsequence we have 

[0, Ctt~] ~ -~F 

and 

By Proposition 3.1 the convolutions in (7.8) converge to F * G vaguely, where F 
is a nondegenerate infinitely divisible law. This contradicts the fact that the limit 

in (7.8) is e-~6o. It follows that ~ ,  ~ 0. In particluar, for y > 0 

nf~l~y xZdF(a.x) --->0. (7.9) 

Now for 0 =< z _---_ y 

nlxl~y x2dF(a"x)=-~Ixl~y~, x2dF(x) 

n f ,  x2dF(x) 
-~n .z<lxl<-_a~y 

> nz-----~2 (L (a,z) - L (a,y)), 
= 2 

hence the last expression tends to zero. Also 

f I (7.10) II*°ll = n x,~y I + x 2dF(a"x)+ n xr>r 1 + x 2dF(a~x)" 
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I f J [ ~ . l [ ~ 0 ,  t h e n ~ ,  c , 0 a n d ( 7 . 7 )  c a n t h e n h o i d o n l y i f a . + b . ~ 0 ,  h =0 ,  a 

contradiction. For the same reason II~. II cannot tend to zero along a subse- 

quence. Therefore  1[~. I[ => a > 0 for all n. By (7.9) and (7.10) we then conclude 

that since 

I X2 
n ,I>, 1 + x 2 d F ( a . x )  <= n L ( a . y )  

the quantity n L ( a . y )  is bounded away from 0. Therefore,  if 0 =< z < y 

n (L ( a . z )  - L (a.y))  --~ 0 
n L ( a . y )  

which together with the boundedness condition on a,+l/a, implies that L is 

slowly varying near oo. 

PROPOSITION 7.4. I f  h is a right-continuous, decreasing funct ion on [0,oo) 

which is slowly varying near o,, and h (x)--~ 0 as x ~ o% then given h > 0 there 

exist 0 < a .  ,zoo such that n h ( a , ) - +  h as n--~oo. 

PROOF. Let 

a. = inf{t: h ( t ) <  h /n} .  

Then h ( a . )  <= A /n  by right continuity, and 

h (a. ]2)]h (a , )  --~ 1, we have nh (a , )  --* h. 

h ( a . -  )>- h /n .  Since 

PROPOSITION 7.5. Suppose ~ ( S. -- b. ) ~ G with 0 < [[ G JJ < 1. Then there exist 

constants c. > 0 and b" such that c.  --~ 0% c.+,/c. ~ 1, and ~ ( S ' -  b ' )  ~ [[ G I1 ~o, 

where S"  = S . /c . .  

PROOF. 

(7.11) 

and 

(7.12) 

Define 

Let 0 = H G [[. There exist nj 7' 0% 0 < ej --~ O, such that for n => nj 

[ (1 -  0 ) -  P[]S. - b.I>j]l_-< e i 

[ (1 -  0 ) -  P[IS. - b. I > j  + llJ-< e i. 

c" ] +  n - n j  
= , n i <= n ~ n i ~1. 

n i ÷ l -  ni 
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c .+1/c .---~ 1. For < n < Then c" .,~ 0% and ' ' ni = nj+~ 

(7.13) P[IS.-b.l>i+ll<--PtlS.-b.t>c'l<=PilS.-b.l>il. 

Let c. = c'1/2, , _  b . -  b./c., then for e > 0  

P[[ S ' -  b'l-<-- el = P[I& - b,, [<-- ec,,], 

hence 

lira inf P [ I S ' -  b ' l  =< e]  ->_ 0. 
n 

Also, by (7.11)-(7.13) we have for any a > 0 

lim inf P[I S ' -  b'l >= a] => 1 - 0. 
n 

It follows that 

THEOREM 7.6. 

~ ( S ' -  b ' ) -~  060. 

(i) Suppose 0 < tz~ <= a,+da, < or2 < 0% and for some (b,) 

~ ( S . - b . ) - - * G ,  O<[[GI I< I .  

which shows that 

(7.16) nL(a.)  <=c < °°, n > l" 

(7.14) 

Then L is slowly varying. 
(ii) I f  L is slowly varying and (7.14) holds, then b,--~b and G =[[G[[Sb. 

Furthermore, given 0 </3 < 1, if (a ") is picked to satisfy nL (a')--> - log/3 (which 

is always possible by Proposition 7.4) then 

PROOF. By Proposition 7.5 we can find c. 7 ~ ,  c,÷dc,---~l such that 
~ ( c : ~ ( S . -  a , ) ) ~ I I G  II6o. The boundedness condition on (a,)  also holds for 

(c.a,), and by Proposition 7.3 we conclude that L is slowly varying near infinity. 

This proves (i). 
We now proceed to show (ii). Since ~f(&) is not dissipative along any 

subsequence, Corollary 6.5 implies 

I x2 (7.15) sup n ~ dF(a.x)  <°°, 
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We will now show that  (b . )  is a bounded  sequence.  If not,  a ssume that  b.~ --.oo 

(the case of  -oo  is similar), and write 

a . S .  - c .  
(7.17) S. - b. = - - .  b., 

¢n 

where  c. = a,b,. Since we may  assume c,~ > a,~, we have  nkL(c.,)<= c by (7.16). 

H e n c e  along a subsequence  of (n~) one  gets nL(c,)---~ A >= 0. By Proposi t ion  7.2 

along this subsequence  ~(a,S,/c,)---~ e-~8o, and by (7.17), given that  b,~ --.0% we 

have  ~ ( S .  - b . ) ~  0 along this subsequence ,  which contradic ts  (7.14). It follows 

that  (b,)  is a b o u n d e d  sequence.  It is now clear f rom (7.14), (7.16) and 

Proposi t ion 7.2 that the sequence  (b . )  must  converge  to a real n u m b e r  b. T h e  last 

part  of assert ion (ii) follows f rom Propos i t ions  7.2 and 7.4. 

As a corol lary we get 

THEOREM 7.7. If ~(S.)--} G, 0 < ] I G H < I ,  then G = l l o l l s 0 .  

PROOF. If G is not concen t ra ted  in the origin, then by Proposi t ion  4.1 we 

have  a,+~/a. ~ 1. H e n c e  by T h e o r e m  7.6 (with b, = 0) we have  L slowly varying.  

Let  /3 be  such that  

O ({0}) < fl < II G II. 

By Theorem 7.6 there exist a ' /~  ~, such that ~(ZZ1XJa')--~ 138o. Since the 
normal iz ing cons tants  a "  m a k e  more  mass  go to zero than the cons tan ts  a,,  we 

must  have  a,/a'--~O; on the o the r  hand,  a "  also allow m o r e  mass  to escape  to 

infinity than a,, hence  a,/a',---~oo, which is a contradict ion.  It follows that  

G -- I IGI lao .  
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